17 research outputs found

    A P-Lingua Programming Environment for Membrane Computing

    Get PDF
    A new programming language for membrane computing, PLingua, is developed in this paper. This language is not designed for a speci c simulator software. On the contrary, its purpose is to o er a general syntactic framework that could de ne a uni ed standard for membrane computing, covering a broad variety of models. At the present stage, P-Lingua can only handle P systems with active membranes, although the authors intend to extend it to other models in the near future. P-Lingua allows to write programs in a friendly way, as its syntax is very close to standard scienti c notation, and parameterized expressions can be used as shorthand for sets of rules. There is a built-in compiler that parses these human-style programs and generates XML documents that can be given as input to simulation tools, di erent plugins can be designed to produce speci c adequate outputs for existing simulators. Furthermore, we present in this paper an integrated development environment that plays the role of interface where P-lingua programs can be written and compiled. We also present a simulator for the class of recognizer P systems with active membranes, and we illustrate it by following the writing, compiling and simulating processes with a family of P systems solving the SAT problem.Ministerio de EducaciĂłn y Ciencia TIN2006-13425Junta de AndalucĂ­a TIC-58

    A Computational Complexity Theory in Membrane Computing

    Get PDF
    In this paper, a computational complexity theory within the framework of Membrane Computing is introduced. Polynomial complexity classes associated with di erent models of cell-like and tissue-like membrane systems are de ned and the most relevant results obtained so far are presented. Many attractive characterizations of P 6= NP conjecture within the framework of a bio-inspired and non-conventional computing model are deduced.Ministerio de Educación y Ciencia TIN2006-13425Junta de Andalucía P08–TIC-0420

    Membrane dissolution and division in P

    Get PDF
    Membrane systems with dividing and dissolving membranes are known to solve PSPACE problems in polynomial time. However, we give a P upperbound on an important restriction of such systems. In particular we examine systems with dissolution, elementary division and where each membrane initially has at most one child membrane. Even though such systems may create exponentially many membranes, each with di erent contents, we show that their power is upperbounded by PJunta de AndalucĂ­a TIC-581Ministerio de EducaciĂłn y Ciencia TIN2006-1342

    Using membrane computing for obtaining homology groups of binary 2D digital images

    Get PDF
    Membrane Computing is a new paradigm inspired from cellular communication. Until now, P systems have been used in research areas like modeling chemical process, several ecosystems, etc. In this paper, we apply P systems to Computational Topology within the context of the Digital Image. We work with a variant of P systems called tissue-like P systems to calculate in a general maximally parallel manner the homology groups of 2D images. In fact, homology computation for binary pixel-based 2D digital images can be reduced to connected component labeling of white and black regions. Finally, we use a software called Tissue Simulator to show with some examples how these systems wor

    Searching Previous Configurations in Membrane Computing

    No full text

    Characterizing tractability by tissue-like P-systems

    Get PDF
    In the framework of recognizer cell–like membrane systems it is well known that the construction of exponential number of objects in polynomial time is not enough to efficiently solve NP–complete problems. Nonetheless, it may be sufficient to create an exponential number of membranes in polynomial time. In this paper, we study the computational efficiency of recognizer tissue P systems with communication (symport/antiport) rules and division rules. Some results have been already obtained in this direction: (a) using communication rules and making no use of division rules, only tractable problems can be efficiently solved; (b) using communication rules with length three and division rules, NP–complete problems can be efficiently solved. In this paper, we show that the length of communication rules plays a relevant role from the efficiency point of view for this kind of P systems.Peer ReviewedPostprint (published version

    Regulation and covering problems in MP systems

    No full text
    Summary. The study of efficient methods to deduce fluxes of biological reactions, by starting from experimental data, is necessary to understand the dynamics of a metabolic model, but it is also a central issue in systems biology. In this paper we report some partial results and related open problems regarding the efficient computation of regulation fluxes in metabolic P systems. By means of Log-gain theory the system dynamics can be linearized, in such a way to be described by a recurrence equations system, of which we point out a few algebraic properties, involving covering problems.
    corecore